
On invertible inflection theory

+merlan #flirora

April 22, 2024

Contents

1 Introduction 5
1.1 The compositionality of linguistic inflection 5

2 Regular systems 9
2.1 Semiautomata . 9

3 Truncation 13
3.1 Examples of concatenation rules . 14
3.2 Generalizations . 15

3.2.1 Concatenation on regular systems . 15
3.2.2 𝑁-ary concatenation . 16

3.3 Case study: Ŋarâþ Crîþ v9e . 16

4 Into paradigms 19

Version 2024-04-22 4fcbbad
Date Mon Apr 22 22:46:50Z 2024
Racket 8.6
Pollen 3.2
System Linux 5.4.109+ x86_64
NodeJS v12.22.9
f9i f9i 0.1.0

Table 1: Version information.

3

Chapter 1

Introduction

Suppose that 𝒦 is the set of all possible lexical entries in a language, 𝐶 is a set of category
labels, and 𝐿 is the set of all phonotactically valid words in the language. Then suppose 𝑓 ∶
𝒦 × 𝐶 → 𝐿 is the function that inflects words in the language.

We wish to not only be able to inflect a given lexical entry in a given category but also
to perform the reverse task: given an inflected word form, find all lexical entries that it could
be derived from, along with the category of the inflected form. That is, we wish to devise an
algorithm that computes the preimage 𝑓←({𝑠}) for any 𝑠 ∈ 𝐿.

If we are concerned only with finding matches in a fixed dictionary 𝐾 ⊆ 𝒦, then we can
store a mapping for all 𝑘 ∈ 𝐾 and 𝑐 ∈ 𝐶 from 𝑓 (𝑘, 𝑐) to (𝑘, 𝑐). This method is conceptually
simple and requires no structural knowledge of 𝑓, but it takes 𝑂(|𝐾 | ⋅ |𝐶|) entries and requires
𝐶 to be finite, making it space-intensive for highly inflecting languages.

Because Ŋarâþ Crîþ v9’s inflection rules have been complex, this brute-force method has
been used for f9i. During the development of sp9 for Project Shiva, however, +merlan #flirora
proposed investigating alternative approaches that would not require storing all inflected
forms.

1.1 The compositionality of linguistic inflection
Many inflection paradigms are not perfectly fusional. That is, we can express 𝐶 as a Cartesian
product of other sets 𝐶0 × 𝐶1 × ⋯ × 𝐶𝑟−1 and define a sequence of functions 𝑓𝑖 ∶ 𝐿𝑖 × 𝐶𝑖 → 𝐿𝑖+1,
where 𝐿0 = 𝒦 and 𝐿𝑟 = 𝐿. Then 𝑓 involves applying each 𝑓𝑖 in succession, passing each
category label:

𝑓 (𝑘, (𝑐0, 𝑐1, … , 𝑐𝑟−1)) = 𝑓𝑟−1(… 𝑓1(𝑓0(𝑘, 𝑐0), 𝑐1), … , 𝑐𝑟−1) (1.1)

This structure allows us to compute 𝑓←({𝑠}) by inverting each step of the inflection process
in reverse order:

𝑆𝑛 = {(𝑠, ∅)} (1.2)

𝑆𝑖−1 = ⋃
(𝑠,𝑐)∈𝑆𝑖

{(𝑠′, (𝑐′, 𝑐)) ∣ (𝑠′, 𝑐′) ∈ 𝑓←
𝑖−1({𝑠})} (1.3)

𝑓←({𝑠}) = 𝑆0 (1.4)

5

6 CHAPTER 1. INTRODUCTION

Additionally, many parts of speech can be categorized into multiple inflectional classes.
In mathematical terms, 𝒦 can be partitioned into sets 𝑃 0, 𝑃 1, … , 𝑃𝜋−1, each of which has a
function 𝑓 𝑗. ∶ 𝑃 𝑗 × 𝐶 → 𝐿 = 𝑓 |𝑃 𝑗×𝐶 that is ‘simpler’ to implement than 𝑓 itself. Hence, 𝑓←({𝑠})
can be computed by attempting to match against each of the subsets 𝑃 𝑗:

𝑓←({𝑠}) =
𝜋−1

⋃
𝑗=0

(𝑓 𝑗.)←({𝑠}) (1.5)

Alternatively, we can partition the set 𝐶 into sets 𝐶0, 𝐶1, … 𝐶𝛾−1, with corresponding func-
tions 𝑓 .𝑘 ∶ 𝒦 × 𝐶𝑘 → 𝐿 = 𝑓 |𝒦×𝐶𝑘 , such that

𝑓←({𝑠}) =
𝛾−1

⋃
𝑘=0

(𝑓 .𝑘)←({𝑠}) (1.6)

Importantly, each of these decompositions produce a set of tuples (𝒦 ′, 𝐶′, 𝐿′, 𝑓 ′) which
can be analyzed as a subproblem of the original problem and treated in the same way.

As an example, consider a language that has five classes for nominal inflections, which can
be categorized into two broad groups, X and Y. This language also has cases in three groups:

• Group A cases are the most commonly used cases and have distinct declensions per
class.

• Group B cases are less commonly used than group A cases and are declined differently
between X classes and Y classes, but the declensions are the same within each group of
classes.

• Group C cases are the least commonly used and are declined in the same way across all
nouns. Additionally, while group A and B cases are coexponential with number, group C
cases are monoexponential in that nouns in group C cases have a case ending followed
by a number ending.

Then we could decompose the problem (𝒦, 𝐶, 𝐿, 𝑓) first by partitioning 𝐶 into 𝐶𝐴 ∪ 𝐶𝐵 ∪
𝐶𝐶. Subsequently, (𝒦, 𝐶𝐴, 𝐿, 𝑓 .𝐴) is decomposed by partitioning 𝒦 into 𝑃 0 ∪ … ∪ 𝑃 4, while
(𝒦, 𝐶𝐵, 𝐿, 𝑓 .𝐵) is decomposed by partitioning the same set as 𝑃𝑋 ∪ 𝑃 𝑌.

In contrast, (𝒦, 𝐶𝐶, 𝐿, 𝑓 .𝐶) is decomposed by composition into (𝒦, 𝐶𝐶
0 , 𝐿1, 𝑓 .𝐶

0) (adding the
case affix) and (𝐿1, 𝐶𝐶

1 , 𝐿, 𝑓 .𝐶
1) (adding the number affix). We now have the following simpler

problems:

(𝑃 0, 𝐶𝐴, 𝐿, 𝑓 0.𝐴) (1.7)
(𝑃 1, 𝐶𝐴, 𝐿, 𝑓 1.𝐴) (1.8)
(𝑃 2, 𝐶𝐴, 𝐿, 𝑓 2.𝐴) (1.9)
(𝑃 3, 𝐶𝐴, 𝐿, 𝑓 3.𝐴) (1.10)
(𝑃 4, 𝐶𝐴, 𝐿, 𝑓 4.𝐴) (1.11)
(𝑃𝑋, 𝐶𝐵, 𝐿, 𝑓 𝑋.𝐵) (1.12)
(𝑃 𝑌, 𝐶𝐵, 𝐿, 𝑓 𝑌 .𝐵) (1.13)
(𝒦, 𝐶𝐶

0 , 𝐿1, 𝑓 .𝐶
0) (1.14)

(𝐿1, 𝐶𝐶
1 , 𝐿, 𝑓 .𝐶

1) (1.15)

1.1. THE COMPOSITIONALITY OF LINGUISTIC INFLECTION 7

This compositionality was the reason that we did not choose to define the set of possible
categories 𝐶(𝑘) as dependent on the lexical entry. If we did so, then we could partition𝒦 into
equivalence classes on 𝐶(𝑘) to yield subproblems that have a fixed set of category labels.

Chapter 2

Regular systems

In this chapter, we introduce a notion of regular systems, which are a collection of related
regular languages. Specifically, a regular system consists of a finite state machine, yielding a
language for each pair of start and end states. If the set of phonotactically valid words in a
natural language is a regular language, then substrings of words can be considered to belong
in one of the languages yielded by a corresponding regular system.

An example is Ŋarâþ Crîþ’s finite state machine (Figure 2.1), which defines five states
{𝑠, 𝑔, 𝑜, 𝑛, 𝜔}. Each transition carries a payload defining a component of a syllable. For instance,
the transition from 𝑠 to 𝑔 is labeled with Ι, the set of all initials, indicating that any initial is
sufficient to transition from 𝑠 to 𝑔. A phonotactically valid Ŋarâþ Crîþ word starts from 𝑠
to 𝜔, but individual morphemes can be between a different pair of states. For instance, the
morphemes in cenv-as-le you write it have the following structures:

• cenv- from 𝑠 to 𝑜. In the case that this has at least one full syllable and does not end with
a lenited consonant, as is here, this is called a stem.

• -as from 𝑜 to 𝑠

• -le from 𝑠 to 𝜔

Formally, we define a language system Λ over a set of states 𝑄 and an alphabet Σ as a
function 𝑄 × 𝑄 → 𝒫 (Σ) that has the following properties:

• Identity: For all 𝑞 ∈ 𝑄, 𝜀 ∈ Λ(𝑞, 𝑞).

• Transitivity: For all 𝑝, 𝑞, 𝑟 ∈ 𝑄, Λ(𝑝, 𝑞) ⋅ Λ(𝑞, 𝑟) ⊆ Λ(𝑝, 𝑟), where ⋅ denotes the con-
catenation of languages. We say that a language system has strict transitivity if
Λ(𝑝, 𝑟) = ⋃𝑞∈𝑄 Λ(𝑝, 𝑞) ⋅ Λ(𝑞, 𝑟).

A regular system is a language system in which all languages Λ(𝑝, 𝑞) are regular.
Given a subset of states 𝑄′ ⊆ 𝑄, we can define a subsystem Λ′ = Λ|𝑄′×𝑄′ over 𝑄′ and Σ.

2.1 Semiautomata
A semiautomaton1 (DSA) is a deterministic finite automaton that does not specify a start or
accept state. A DSA 𝑀 = (𝑄, Σ, 𝛿) yields a regular language 𝑀(𝑝, 𝑞) for every 𝑝, 𝑞 ∈ 𝑄, as

1https://en.wikipedia.org/wiki/Semiautomaton

9

https://en.wikipedia.org/wiki/Semiautomaton

10 CHAPTER 2. REGULAR SYSTEMS

Figure 2.1: The finite state machine describing the phonotactics of Ŋarâþ Crîþ.

2.1. SEMIAUTOMATA 11

𝑞0

𝑞1

a

a

b

b

{𝑞0}

{𝑞1}

{𝑞0, 𝑞1}

a

b

a, bNFA to DFA

Figure 2.2: A counterexample to the conjecture that every NSA can be translated into a DSA
with an equivalent regular system: the 𝑞0 and 𝑞1 states both correspond to multiple accepting
states in the DSA.

Start End Language
𝑞0 𝑞0 (ab*)*
𝑞0 𝑞1 a+(ba*)*
𝑞1 𝑞0 b+(ab*)*
𝑞1 𝑞1 (ba*)*

Table 2.1: The regular expression for each language of the system described by Figure 2.2.

supplementing starting and accepting states to a semiautomaton yields a DFA. Additionally,
these languages have the identity and transitivity properties required for regular systems.
These properties (except for perhaps strict transitivity) still hold whenwe only look at a subset
of states 𝑄′ ⊆ 𝑄.

We also introduce the notion of a nondeterministic semiautomaton (NSA), which can
be seen as a nondeterministic finite automaton without starting or accepting states. More
formally, an NSA is a tuple 𝑀 = (𝑄, Σ, 𝛿) where 𝛿 ∶ 𝑄 × Σ → 𝒫 (𝑄) is the transition function.
For states 𝑝, 𝑞 ∈ 𝑄, 𝑀(𝑝, 𝑞) is the set of strings that can be generated by a path from 𝑝 to 𝑞.
We also define nondeterministic semiautomata with ε-moves (NSA-ε) similarly, in which
transitions without an input symbol are allowed. For similar reasons, NSAs and NSA-εs have
the properties of regular systems, and these properties (except for perhaps strict transitivity)
still hold when we only look at a subset of states 𝑄′ ⊆ 𝑄. It follows that any regular system can
be converted into a subsystem of an NSA-ε by applying Thompson’s construction algorithm
between each pair of input states.

However, while it is possible to translate an NFA into a DFA, translating an NSA into a
DSA is less trivial. In general, it is not possible to translate an NSA into a DSA with the same
regular system if each state of the NSA must correspond to exactly one state in the DSA. A
single accepting state in the NSA might correspond to multiple accepting states in the DSA
as shown in Figure 2.2.

However, it is possible to map each state of the NSA to a set of states in the DSA. In Figure
2.2, 𝑞0 in the NSA𝑀would correspond to {{𝑞0}, {𝑞0, 𝑞1}} in the DSA𝑀 ′ and 𝑞1 would correspond
to {{𝑞1}, {𝑞0, 𝑞1}}. Let 𝐷 be the function mapping states in 𝑀 to corresponding sets of states in
𝑀 ′.

However, note that given two states 𝑝 and 𝑞 of 𝑀, the existence of a path from some 𝑝∗ ∈
𝐷(𝑝) to 𝑞∗ ∈ 𝐷(𝑞) in𝑀 ′ accepting a string 𝑠 does not imply that 𝑠 ∈ 𝑀(𝑝, 𝑞). For example, while

12 CHAPTER 2. REGULAR SYSTEMS

𝑀(𝑞0, 𝑞1) does not accept the empty string,𝑀 ′({𝑞0, 𝑞1}, {𝑞0, 𝑞1}) does. Therefore, we require that
for all 𝑝∗ ∈ 𝐷(𝑝), there exists a state 𝑞∗ ∈ 𝐷(𝑞) such that 𝑀 ′ accepts 𝑠 from the state 𝑝∗ to 𝑞∗.

More generally, we can establish a bijection between the set of abstractstates𝒬 of a regular
system Λ and the set of sets of concrete states 𝑄 of a semiautomaton 𝑀. Then a string 𝑠 is in
Λ(𝑝, 𝑞) if and only if for all 𝑝∗ ∈ 𝑝, there exists a 𝑞∗ ∈ 𝑞 such that there is a path from 𝑝∗ to 𝑞∗
in 𝑀 for 𝑠:

Λ(𝑝, 𝑞) = ⋂
𝑝∗∈𝑝

⋃
𝑞∗∈𝑞

𝑀(𝑝∗, 𝑞∗) (2.1)

In this text, we concern ourselves only with DSAs and their subsystems. This is sufficient
for most natural languages if we take the various components of a syllable, including null
segments, as symbols themselves and augment each symbol with its source and destination
states. For instance, Ŋarâþ Crîþ tfełor would be represented as

((tf, 𝑠, 𝑔),
(𝜀, 𝑔, 𝑜),
(e, 𝑜, 𝑛),
(𝜀, 𝑛, 𝑠),
(ł, 𝑠, 𝑔),
(𝜀, 𝑔, 𝑜),
(o, 𝑜, 𝑛),
(r, 𝑛, 𝜔)) (2.2)

We refer to strings represented this way as fully syllabified strings or assemblages
and any element of an assemblage as an assemblage unit. A disambiguated regular sys-
tem is a regular system Λ over 𝑄 in which for each nonempty string 𝑠, there is at most one
(𝑝, 𝑞) ∈ 𝑄 × 𝑄 such that 𝑠 ∈ Λ(𝑝, 𝑞).

Chapter 3

Truncation

In many cases, inflection involves the addition of prefixes or suffixes to a stem. It follows that
inverting this process would involve the removal of these affixes. However, concatenation
often results in phonological changes to one or both of the stem and the affix. For example,
I meet you in Ŋarâþ Crîþ would be derived as cenv-a-ve, but the co-occurrence of v in the
resulting word is considered undesirable (oginiþe cfarðerþ) and is resolved by replacing the
first v with an n. Thus, the resulting word is not **cenvave but rather cennave.

Let Σ be an alphabet and 𝑓 ∶ Σ∗ × Σ∗ → Σ∗ × Σ∗ be a function describing concatenation
rules transforming pairs of strings (𝑎, 𝑏). Generally, 𝑓 can be seen as the composition of some
number of individual ‘rules’ 𝑓0, 𝑓1, … , 𝑓𝑛−1 ∶ Σ∗ × Σ∗ → Σ∗ × Σ∗.

Then let 𝑎 𝑓∼ 𝑏 be the concatenation of 𝑎 and 𝑏 under 𝑓, or 𝑓-concatenation, defined as

𝑎 𝑓∼ 𝑏 = 𝑎′ ⋅ 𝑏′ where (𝑎′, 𝑏′) = 𝑓 (𝑎, 𝑏) (3.1)

Given 𝑏, 𝑤 ∈ Σ∗, we wish to find all 𝑎 ∈ Σ∗ such that 𝑎 𝑓∼ 𝑏 = 𝑤. If we can compute the
preimage of a set over 𝑓, then this is simply

𝐴 =
|𝑤 |

⋃
𝑖=0

{𝛼 ∣ (𝛼 ′, 𝛽′) ∈ 𝑓←({(𝑤[0..𝑖], 𝑤[𝑖..|𝑤 |])}) ∧ 𝛽′ = 𝑏} (3.2)

That is, we do the following:

• Split 𝑤 into (𝛼, 𝛽) in all possible ways.

• Find all (𝛼 ′, 𝛽′) such that 𝑓 (𝛼 ′, 𝛽′) = (𝛼, 𝛽).

• Collect all such 𝛼 ′ where 𝛽′ = 𝑏.

An analogous problem and its solution can be stated for removing prefixes.
This algorithm is quite general, and certain properties of 𝑓 admit simpler algorithms. (The

solution is trivial if 𝑓 is the identity function.)
If for all 𝑎, 𝑏 and (𝑎′, 𝑏′) = 𝑓 (𝑎, 𝑏), the strings 𝑏 and 𝑏′ have the same length, then 𝑓 is

considered to be right-isometric. In this case, we do not have to try all combinations of
(𝛼, 𝛽) but rather only the one in which |𝛽| = |𝑏|.

More generally, let

13

14 CHAPTER 3. TRUNCATION

𝐷𝑓(𝑏) = {|𝑏′| ∣ 𝑎 ∈ Σ∗, (𝑎′, 𝑏′) = 𝑓 (𝑎, 𝑏)} (3.3)

be the set of possible lengths that 𝑓 could transform 𝑏 to become. Then we only have to
try combinations of (𝛼, 𝛽) where |𝛽| ∈ 𝐷𝑓(𝑏).

A stronger property that right isometry is right invariance, which requires 𝑏 = 𝑏′; in
other words, 𝑓 is not allowed to change the second string. If 𝑓 is right-invariant, then we can
return an empty set if 𝑏 is not a suffix of 𝑤.

Additionally, concatenation rules in human languages rarely change segments far away
from the junction. For 𝑎, 𝑏 ∈ Σ∗ and (𝑎′, 𝑏′) = 𝑓 (𝑎, 𝑏), let 𝑠 be the longest common suffix of 𝑏
and 𝑏′, leaving 𝑟 and 𝑟 ′ before it. Then the forward dextral radius of influence of (𝑎, 𝑏)
with respect to 𝑓 is 𝑅𝑑(𝑓 ; 𝑎, 𝑏) = |𝑟 | and the backward dextral radius of influence is
𝑅′
𝑑(𝑓 ; 𝑎, 𝑏) = |𝑟 ′|. We can also define these radii for the function itself:

𝑅𝑑(𝑓) = sup
𝑎,𝑏∈Σ∗

𝑅𝑑(𝑓 ; 𝑎, 𝑏) (3.4)

𝑅′
𝑑(𝑓) = sup

𝑎,𝑏∈Σ∗
𝑅′
𝑑(𝑓 ; 𝑎, 𝑏) (3.5)

Note that for right-isometric 𝑓, 𝑅𝑑(𝑓) = 𝑅′
𝑑(𝑓).

Given knowledge of these values, suppose that for a given (𝛼, 𝛽), we compare 𝑏 and 𝛽,
aligning them at their ends. Then if 𝑏 and 𝛽 differ in the characters at indices |𝑏| − 𝑖 and |𝛽| − 𝑖,
respectively, and if |𝑏| − 𝑖 < 𝑅𝑑(𝑓) or |𝛽| − 𝑖 < 𝑅′

𝑑(𝑓), then we can conclude that 𝑓←(𝛼, 𝛽) does
not contain any pairs (𝛼 ′, 𝛽′) such that 𝛽′ = 𝑏 and can thus discard the pair (𝛼, 𝛽).

Unfortunately, Ŋarâþ Crîþ v9e’s concatenation rules have a dextral radius of influence of
5, while many of its affixes are shorter than 5 assemblage units long. For that reason, radius-
of-influence simplifications are unlikely to be useful for Ŋarâþ Crîþ.

3.1 Examples of concatenation rules
The identity function is right-invariant and has a dextral radius of influence of 0.

Let𝑚 and 𝑛 be nonnegative integers and 𝑔 ∈ Σ𝑚×Σ𝑛 → Σ∗×Σ∗. Then denote by peephole𝑚,𝑛(𝑔)
the function 𝑓 such that

𝑓 (𝑎, 𝑏) = {
(𝑎[..|𝑎| − 𝑚] ⋅ 𝑎′, 𝑏′ ⋅ 𝑏[𝑛..]) if |𝑎| ≥ 𝑚, |𝑏| ≥ 𝑛, (𝑎′, 𝑏′) = 𝑔(𝑎[|𝑎| − 𝑚..], 𝑏[..𝑛])
(𝑎, 𝑏) if |𝑎| < 𝑚 or |𝑏| < 𝑛

(3.6)

In effect, peephole𝑚,𝑛(𝑔) is a function that affects only the 𝑚 + 𝑛 characters around the
juncture.

Then the following statements are true:

𝐷𝑓(𝑏) = {𝑙 + (|𝑏| − 𝑛) ∣ 𝑙 ∈ 𝐷𝑔(𝑏[..𝑛])} if |𝑏| ≥ 𝑛 (3.7)

𝑅𝑑(𝑓) = 𝑛 (3.8)
𝑅′
𝑑(𝑓) = max

𝑎,𝑏
|𝑏′| where (𝑎′, 𝑏′) = 𝑔(𝑎, 𝑏) (3.9)

In particular, 𝑓 is right-isometric if 𝑔 is.

3.2. GENERALIZATIONS 15

Often, we wish to replace one substring with another if a juncture occurs anywhere within
the substring. For instance, the rule replacing ‘cat’ with ‘dog’ can be expressed as the compo-
sition of two functions peephole2,1(𝑔2) ∘ peephole1,2(𝑔1) where

𝑔1(𝑎, 𝑏) = {
(d, og) if 𝑎 = c, 𝑏 = at
(𝑎, 𝑏) otherwise

(3.10)

𝑔2(𝑎, 𝑏) = {
(do, g) if 𝑎 = ca, 𝑏 = t
(𝑎, 𝑏) otherwise

(3.11)

Suppose that we have a function ℎ ∈ Σ𝑘 → Σ𝑘. If 𝑓 = subst𝑘(ℎ) is such a substitution
function, then it can be expressed as a composition of peephole functions 𝑓𝑛−1 ∘ ⋯ ∘ 𝑓1 where

𝑓𝑖 = peephole𝑖,𝑘−𝑖(𝑔𝑖) (3.12)

𝑔𝑖(𝑎, 𝑏) = (𝑠′[..𝑖], 𝑠′[𝑖..]) where 𝑠′ = ℎ(𝑎 ⋅ 𝑏) (3.13)

subst𝑘(ℎ) is right-isometric and has a dextral radius of influence of 𝑘 − 1.
We have assumed that the function ℎ preserves the length of the substring. We can gener-

alize subst to account for functions that change the length of the input, but we must be careful
about where the new juncture is placed.

3.2 Generalizations
In practice, we often want to check a word 𝑤 against multiple suffixes from a fixed set 𝐵 ⊆ Σ∗.
This problem can be solved similarly to the single-suffix case by matching any of (𝛼 ′, 𝛽′) ∈
𝑓←(…) where 𝛽 ∈ 𝐵. This problem might be simplifiable depending on the properties of 𝑓. If 𝑓
is right-invariant, for instance, then it is possible to use a trie containing the reversed elements
of 𝐵.

Often, we do not want to find all elements of𝐴 but rather its intersectionwith a ‘dictionary
set’ 𝐾𝑏.

3.2.1 Concatenation on regular systems
The notion of truncation can be generalized to be over any pair of formal languages. In this
case, the concatenation rules functionmay have a different codomain from its domain. Usually,
we are interested in languages of a regular system Λ in which the end state of the first string is
equal to the start state of the second string. We define an extended concatenative system
Φ over Λ as a pair of functions (𝜅, 𝜙) where:

• 𝜅 ∶ 𝑄 × 𝑄 × 𝑄 → 𝑄 is a function that takes in three states (𝑝, 𝑞, 𝑟) and outputs a new
middle state 𝑞′, and

• 𝜙 ∶ ⋃𝑝,𝑞,𝑟∈𝑄 [{(𝑝, 𝑞, 𝑟)} → Λ(𝑝, 𝑞) × Λ(𝑞, 𝑟) → Λ(𝑝, 𝜅(𝑝, 𝑞, 𝑟)) × Λ(𝜅(𝑝, 𝑞, 𝑟), 𝑟)] returns for
every triple of states (𝑝, 𝑞, 𝑟) a concatenation rule function for two strings, possibly
changing the middle state according to 𝜅.

For 𝑎 ∈ Λ(𝑝, 𝑞) and 𝑏 ∈ Λ(𝑞, 𝑟), the extended concatenation 𝑎 Φ∼
𝑝,𝑞,𝑟

𝑏 = 𝑎 𝜙(𝑝,𝑞,𝑟)∼ 𝑏 is an
element of Λ(𝑝, 𝑟). If no ambiguity would arise, we omit the state names from the operator
and simply write 𝑎 Φ∼ 𝑏.

16 CHAPTER 3. TRUNCATION

3.2.2 𝑁-ary concatenation
We have looked at binary concatenation; concatenation of more than two operands is often
assumed to be left associative. In other words, concatenating (𝑎, 𝑏, 𝑐) concatenates 𝑎 and 𝑏 first,
then the result of that to 𝑐.

Another possibility for concatenating multiple morphemes is to apply the juncture rules
after all of the concatenations. This means that in this example, any juncture rules applied
between 𝑎 and 𝑏 would have access to the contents of 𝑐. This is more complex than repeated
binary concatenation but has the advantage of being able to use word-global information
(such as stress or syllable position within a word).

The concept of 𝑁-ary concatenation itself does not specify the order in which juncture
rules are applied to each juncture. For instance, if the juncture rules consist of three subpro-
cesses A, B, and C, then given a word with three junctures labeled 1, 2, and 3 from start to
end, then the rules could trigger in any of the following orders (among other possibilities):

• Apply the subprocesses in sequence to each juncture from start to end: A1, B1, C1, A2,
B2, C2, A3, B3, C3

• Apply the subprocesses in sequence to each juncture from end to start : A3, B3, C3, A2,
B2, C2, A1, B1, C1

• Apply each subprocess to all junctures from start to end: A1, A2, A3, B1, B2, B3, C1, C2,
C3

• Apply subprocesses A and C from start to end but B from end to start: A1, A2, A3, B3,
B2, B1, C1, C2, C3

• Apply subprocess A to all junctures, then B and C to each juncture in sequence: A1, A2,
A3, B1, C1, B2, C2, B3, C3

In exchange for this flexibility, 𝑁-ary concatenation has the disadvantage that truncation
requires searching a larger space for possible juncture placements.

3.3 Case study: Ŋarâþ Crîþ v9e
According to the Ŋarâþ Crîþ v9e grammar, concatenation consists of the following processes
applied across the juncture:

1. Any new instances of ⟦j⟧ before ⟦i⟧, ⟦î⟧, or ⟦u⟧ are elided.

2. Deduplication rules are applied.

3. Newly formed bridges are canonicalized and repaired.

We assume that we are working with assemblages in a regular system. Therefore, while a
substitution function can be regarded as a composition of multiple functions 𝑓𝑛−1 ∘⋯ ∘ 𝑓1, most
of these functions will have no effect on concatenation at a given juncture state.

The first process, glide elision, is a right-invariant substitution function based on

ℎ(((𝜇, 𝑔, 𝑜), (𝜈, 𝑜, 𝑛))) = {
((𝜀, 𝑔, 𝑜), (𝜈, 𝑜, 𝑛)) if 𝜈 ∈ {i, î, u}
((𝜇, 𝑔, 𝑜), (𝜈, 𝑜, 𝑛)) otherwise

(3.14)

3.3. CASE STUDY: ŊARÂÞ CRÎÞ V9E 17

whose preimage is straightforward to compute.
The deduplication rules, which resolve instances of oginiþe cfarðerþ, work as follows:

1. The onset ⟦f⟧ or ⟦tf⟧ followed by a non-hatted vowel then ⟦f⟧ or ⟦p·⟧ is replaced with
⟦t⟧.

2. The onset ⟦þ⟧ or ⟦cþ⟧ followed by a non-hatted vowel then ⟦þ⟧ or ⟦t·⟧ is replaced with
⟦t⟧. In addition, a preceding ⟦þ⟧ or ⟦cþ⟧ coda is replaced with ⟦s⟧, and a preceding ⟦rþ⟧
coda is replaced with ⟦r⟧.

3. ⟦h⟧ followed by a non-hatted vowel then ⟦h⟧ or ⟦c·⟧ is replaced with ⟦p⟧.

4. ⟦v⟧ followed by a non-hatted vowel then ⟦v⟧ or ⟦m·⟧ is replaced with ⟦n⟧.

5. ⟦ð⟧ followed by a non-hatted vowel then ⟦ð⟧ or ⟦d·⟧ is replaced with ⟦ŋ⟧.

6. ⟦ħ⟧ followed by a non-hatted vowel then ⟦ħ⟧ or ⟦g·⟧ is replaced with ⟦g⟧.

In f9i, these rules are implemented twice: once for the case when the vowel in question is
followed by a nonterminal coda (thus capturing the following initial), and once for the case
when it is followed by a terminal coda (in which case only rules #1 and #2 are applicable). In
both cases, the preceding coda is captured if available.

This process is more involved than glide elision, but its preimage is not too difficult to
compute, and the process is right-isometric.

The assemblage form makes these changes difficult: the first consonant following a vowel
might belong to the coda of the same syllable or to the initial of the following syllable, and it
may be part of a complex coda or initial. It also complicates situations in which changing a
letter requires the word to be syllabified differently; for this problem, v9e simply chooses to
apply bridge resolution after deduplication, although this has the disadvantage of failing to
remove some cases of oginiþe cfarðerþ.

Ŋarâþ Crîþ v9e’s deduplication rules are quite crude, prompting ad-hoc workarounds to
be made in specific instances of inflection. There are plans in Project Shiva to expand the
range of oginiþe cfarðerþ and thus the scope of deduplication, as well as a desire to avoid
changing the initial consonant of a word. An even more challenging problem is propagation:
if deduplication changes a consonant such that a new instance of oginiþe cfarðerþ arises, then
additional invocations of deduplication might be required to resolve it.

The final step of concatenation is bridge resolution, which modifies awkward coda–ini-
tial pairs to more convenient ones. This process is also used for canonicalizing these pairs
according to the maximal onset principle.

Ŋarâþ Crîþ v9e’s version of this process is complicated by the fact that although v7 allowed
ŋ as a coda, v9 does not. When ŋ appeared as a coda, it was changed into r, modifying the
preceding vowel. -aŋ, -oŋ, and -uŋ were changed to -or, and -eŋ and -iŋ were changed to -jor.
Reflecting this change, bridge resolution first outputs either a true coda or a pseudo-coda of
ŋ, subsequently resolving the latter case by applying this change to the vowel. That is, a final
of -or might have arisen from one of -or, -aŋ, -oŋ, or -uŋ. Likewise, a final of -jor might have
arisen from one of -jor, -jaŋ, -jeŋ, -joŋ, -eŋ, or -iŋ.

Since the number of possible bridges is relatively small, tabulation can be used to imple-
ment the preimage of the first step.

Because bridge resolution is right-isometric, Ŋarâþ Crîþ v9e’s concatenation rules as a
whole are as well.

Chapter 4

Into paradigms

We define a paradigm Π over (Σ, 𝐿) as a triple (𝐶, 𝑆, 𝜓) where:

• 𝐶 is a set of categories that Π inflects for,

• 𝑆 = (𝑆0, 𝑆1, … , 𝑆𝑝−1) is a sequence of subsets of Σ∗, such that 𝑆𝑖 defines the set of values
that the 𝑖th variable part can take, and

• 𝜓 ∶ 𝑆0 × 𝑆1 × ⋯ × 𝑆𝑝−1 × 𝐶 → 𝐿 determines the form of an inflected word.

In most cases, we constrain 𝜓 such that 𝜓(𝑠0, … , 𝑠𝑝−1, 𝑐) is the result of concatenating ele-
ments of {𝑠0, … 𝑠𝑝−1} in a manner that depends only on the value of 𝑐. (The particular semantics
of concatenation depends on the language being modeled, but we require truncation to be
available.)

19

	Introduction
	The compositionality of linguistic inflection

	Regular systems
	Semiautomata

	Truncation
	Examples of concatenation rules
	Generalizations
	Concatenation on regular systems
	N-ary concatenation

	Case study: Ŋarâþ Crîþ v9e

	Into paradigms

