ŋaren crîþa 9 vlefto: Ŋarâþ Crîþ v9

Numerals

Ŋarâþ Crîþ has two sets of cardinal numerals: the long numerals and the short numerals.

Long numerals

FeatureLong numeralsShort numerals
LengthLongShort
Range (within integers)1 – 16All integers
AgreementCase and sometimes genderNone
Use of counter wordsNot usedUsually required
Order relative to noun phraseAfter the noun phrase, possibly separatedImmediately after the noun phrase
OrthographyAlways spelled outSpelled out or figures
Table 1: Comparison between long numerals and short numerals.

Long numerals

The long numerals up to 6 are inflected for case and gender (Tables 2 to 7).

Case \ GenderCelestialTerrestrialHuman
Nominativeminaminosminal
Accusativeminanminonminan
Dativeminasminoþminels
Genitiveminenminenminjel
Locativemonasmjonosmonas
Instrumentalmincacjamjonosminca
Abessiveminþaþjam·jonosminþa
Semblativemenitmanotmenit
Table 2: The long numerals for 1.
Case \ GenderCelestialTerrestrialHuman
Nominativenefanefornefac
Accusativenefannefonnefan
Dativenefasnefosnefacþ
Genitivenefennefarnefen
Locativenofasnjofornofas
Instrumentalnefcacjanjofornefca
Abessivenefoþaþjanofornefocþa
Semblativenefitnefotnefit
Table 3: The long numerals for 2.
Case \ GenderCelestialTerrestrialHuman
Nominativeprênoprêngosprêmo
Accusativeprênonprêngonprêmon
Dativeprênosprêngeprêmos
Genitiveprênenprêngelprêmen
Locativeprônosprôndossiłas
Instrumentalprôncacjaprôndosciþpiłas
Abessiveprônþaþjap·rôndosþilp·iłas
Semblativeprênitprêngotprêmit
Table 4: The long numerals for 3.
Case \ GenderCelestialTerrestrialHuman
Nominativeresiþsrielresiþ
Accusativeresinsrilenrešir
Dativereþþassrilesreþþac
Genitiverestenrisilresčor
Locativerisiþasristosrisiþas
Instrumentalrosicþacjaristosrosicþa
Abessiverosiþaþjaristosrosiþa
Semblativerediþredotrediþ
Table 5: The long numerals for 4.
Case \ GenderCelestialTerrestrialHuman
Nominativeglêmaglêmosglêmac
Accusativeglêmanglêmonglêmor
Dativeglêmasglêmoþglêmecþ
Genitiveglêmenglîmelglêmjor
Locativeglômasglâmosglômas
Instrumentalglômecacjaglêmosglômeca
Abessiveglômeþaþjag·lêmosglômeþa
Semblativeglêmitglêmotglêmit
Table 6: The long numerals for 5.
Case \ GenderCelestialTerrestrialHuman
Nominativecfersîþcfêrsoncfêrsor
Accusativecfersîncfêrsanoncfêrsanor
Dativecferþþâscfêrsoscfêrsos
Genitivecfersêncfêršelcfêršel
Locativecfirsîþascfîrsioncfîrsion
Instrumentalcforsîcþacfîrsiolcfîrsiol
Abessivecforsîþacfîrsiocþcfîrsiocþ
Semblativecfelsiþcfêlsoþcfêlsoþ
Table 7: The long numerals for 6.

The rest of the long numerals (Tables 8 and 9) are inflected for case only.

Case \ #7891011
Nominativeplamisŋatirnalarþemranalfo
Accusativeplaminŋatjannalanemrannalfon
Dativeplamiþaŋatisnalþasemrasnalfos
Genitiveplamenŋatinnaleremrennalfen
Locativeplemeltŋotisnelarþimrasnolfos
Instrumentalplemilcaŋoticanolacþomracnolfoca
Abessiveplemilþaŋotirþanolerþomreþnofelþa
Semblativeplamitŋadirnalirþemlitnalfit
Table 8: The long numerals from 7 to 11.
Case \ #1213141516
Nominativenedrastfaljagrinjogriminmeþos
Accusativenedrantfaljangrinjongrimanmeþon
Dativenedraþtfaljasgrinjosgrimismeþasos
Genitivenedrentfaljengrinjengrimirmeþel
Locativenidraþtfoljasgronjosgrjomismoþos
Instrumentalnodracþatfoljacgrjonocgromircjameþos
Abessivenotreðatfoljeþgrjonoþgrjomiþþjam·eþos
Semblativenedlistfalitgrenitgrimitmeðot
Table 9: The long numerals from 12 to 16.

The lemma form of a long numeral is its attributive form. Because long numerals inflect for case and possibly gender, they can be separated from their heads.

The following types of numerals can be derived from long numerals:

Ordinal long numerals

Ordinal numerals start from zero, such that number 0 refers to the first object, 1 refers to the second, and so on. Ordinal long numerals occur before the noun phrase they modify but need not be adjacent to them.

Case \ GenderCelestialTerrestrialHuman
Nominativeelaþelroselacþ
Accusativeeloreljonelor
Dativeelieljoselic
Genitiveeliþelþoselicþ
Locativeelaþaelaþoselaþac
Instrumentalelicaeliconeliħac
Abessiveeliþaeliþoneliþac
Semblativeelitelotelit
Table 10: The ordinal long numerals for 0.
Case \ GenderCelestialTerrestrialHuman
Nominativegesaþgeþosgesacþ
Accusativegesorgešongesor
Dativegesgeosges
Genitivegešiþgešiþgešicþ
Locativegjaþagjaþosgjaþac
Instrumentalgecþagecþongeþþac
Abessivegeþageþongeþac
Semblativegesitgesotgesit
Table 11: The ordinal long numerals for 1.
Case \ GenderCelestialTerrestrialHuman
Nominativenefasaþnefaþosnefasacþ
Accusativenefasornefasornefasor
Dativenefaselnefaselnefasel
Genitivenefasaþnefašonnefasecþ
Locativenefosaþanefosaþosnefosaþac
Instrumentalnefosacþanefosacþonnefosaþþac
Abessivenefoseþanefoseþonnefoseþac
Semblativenefagitnafegotnefagit
Table 12: The ordinal long numerals for 2.
Case \ GenderCelestialTerrestrialHuman
Nominativeprêsaþprêþonprêsacþ
Accusativeprêsorprêsorprêsor
Dativeprêsacelprêsacelprêsacel
Genitiveprêsaþasprêsaþonprêsaþac
Locativeprôsaþaprôsaþosprôsaþac
Instrumentalprôsacþaprôsacþonprôsaþþac
Abessiveprôseþaprôseþonprôseþac
Semblativeprêvitprêvotprêvit
Table 13: The ordinal long numerals for 3.

Short numerals

The short numerals up to 16 are listed in Table 14.

HexDecName
00ces
11vil
22sen
33en
44tar
55do
66mja
77len
88fe
99ni
A10re
B11pin
C12va
D13ħas
E14go
F15łar
1016sraþ
Table 14: The short numerals up to 16.

Short numerals up to 162=256 of the form 16x+y are roughly formed as x-sraþ-y. x is omitted if it equals 1. ⟦-sraþ-⟧ might fuse with the word for y, as shown in Table 15.

HexDecName
00-sraþ
11-sraþvil
22-sraþsen
33-sraþien
44-sraþtar
55-sraðo
66-sraþmja
77-srałen
88-srafþe
99-sraþni
A10-sraþre
B11-sraþpin
C12-sraþfa
D13-sreþas
E14-sracþo
F15-sratłar
Table 15: Fused forms of ⟦-sraþ-⟧ with unit digits.

Short numerals up to 164=65536 of the form 256x+y are formed as x-flen-y, where x is omitted if equal to 1 and y is omitted if zero.

Numerals beyond 65536 are formed by splitting the digits into groups of four from the least significant digit and using the words for powers of 65536 in Table 16. A coefficient of one on the highest power of 65536 in a short numeral is omitted. Any power of 65536 with a coefficient of zero is omitted.

#Name
164dara
168seta
1612riso
1616nanâ
1620gelten
1624sałar
1628lina
1632ðose
Table 16: Short numerals: powers of 65536.
HexDecName
1117sraþvil
2032sensraþ
4569tarsraðo
BD189pinsreþas
100256flen
107263flenlen
300768enflen
9B3039 728nisraþpinflenensraþ
1 87A4100 260darafesrałenflenresraþtar
4 9AC2301 762tardaranisraþrevasraþsen
1 0000 05004 294 968 576setadoflen
31 0001 0000210 453 463 040ensraþvilsetavildara
Table 17: Examples of short numerals.

Like long numerals, short numerals are used primarily as determiners. Unlike long numerals, they require classifiers for most nouns.

ClassifierDescription
-laþhumans and other sapient species
-cefbirds
-delfish
-cirinsects and arachnids
-mismedium-sized (approx. 2 kg) to large animals
-þafsmall animals (less than 2 kg)
-nenwoody plants (such as trees)
-minnon-woody plants (such as grass)
-jenfruits and nuts
-ðisflexible flat objects
-čisrigid flat objects
-gorballs and other spherical objects
-čecylindrical or reasonably thick rod-like objects
-seiring-like objects
-sinbranches, roots, arms, and legs; thin rod-like objects
-micgrains or other small particles; small insects
-venwritten works (such as books)
-cjanartistic or intellectual works (other than written works)
-čarrooms, houses, buildings
-činweapons
-tesconnections or links; chains
-ðeevents in time
-þremcelestial bodies
Table 18: Classifiers for short numerals.

The following nouns do not have classifiers, but they must use a long numeral if available:

The numeral ⟨ces⟩, as well as any numeral that is or ends in ⟨ħas⟩ or ⟨sreþas⟩, triggers a lenition in the classifier.

Adding the particle ⟨ceþe⟩ before a short numeral negates it, eclipsing it. Since there are no negative long numerals, a negative short numeral can always be used for unclassified nouns.

To refer to the quantity described by a short numeral itself, a short numeral can be compounded with ⟨mener⟩ as the head. The nominative form of a nominal short numeral may be abbreviated using figures followed by a ⟨/⟩, especially in data.

Short numerals other than the ones for 0, 1, 2, and 3 can be used as ordinal numerals by placing them immediately before the noun phrase being modified with no classifier.

Non-integral numerals

Rational numerals

Some commonly-used fractions have long forms: ½ for each gender (Table 19), and ⅓, ⅔, and ⅕ without distinctions in gender (Table 20).

Case \ GenderCelestialTerrestrialHuman
Nominativemânamânosmânac
Accusativemânanmânonmânor
Dativemôrasmôrosmôras
Genitivemânmânmân
Locativemâsormâsormâsor
Instrumentalmâŋacjamâselmâŋac
Abessivemênþaþjam·âselmênþac
Semblativemânatmânotmânat
Table 19: The long numerals for ½.
Case \ #1⁄32⁄31⁄5
Nominativesêþanêþaacasa
Accusativesêþannêþanacasan
Dativesêþasnêþasacaras
Genitivesêþennêþenacasen
Locativesajoþosnajoþosacos
Instrumentalsoþocaneþocaacita
Abessivesotoþanetoþaarica
Semblativesaðatnelðatacadet
Table 20: The long numerals for other fractions.

Rational numbers with a numerator of 1 are derived from the short numeral of the denominator plus a suffix that depends on case (Table 21). When the short numeral is monosyllabic, an extra syllable ⟦-râ-⟧ is infixed between the numeral and the suffix. Because of the presence of case agreement, these numerals are also considered long numerals.

CaseSuffix
Nominative-ten
Accusative-tane
Dative-tens
Genitive-teri
Locative-tarþ
Instrumental-tarco
Abessive-tarþo
Semblative-telca
Table 21: Suffixes for unit fractions.
(1)
edvel mjare varâten.
edv-el
penny-nom.sv
mjar-e
shilling-nom.sg
va-râ-ten.
twelve-fracb-frac.nom
One penny is 1⁄12th of a shilling.

Vulgar fractions (i.e. of the form nd) are formed using the unit fraction for 1d immediately followed by the numeral for n. Since n does not receive a classifier, it must be long if there is a long form available for n, in which case its case and gender matches that of 1d.

(2)
nemiren acasan nefan mênčesta.
nem-iren
apple-acc.pl
acas-an
one_fifth-acc
nefan
two.acc.cel
mênč-es-ta.
eat-2sg-past
You ate two-fifths of an apple.
(3)
ânirâteri plamen
â-ni-râ-teri
nnom-nine-fracb-frac.gen
plamen
seven.gen
of the number 7⁄9
(4)
a nisraþniten mjasraðo
a
npn
ni-sraþ-ni-ten
nine-sixteen-nine-frac.nom
mja-sraðo
six-sixteen.five
101⁄153 of it

A mixed number m+nd is expressed by using the numeral for m (the long form if one is available, otherwise the short form), followed by the conjunction ⟨i⟩ plus the numeral for nd.

(5)
nafsa mina i sêþa
nafs-a
nafsa-nom.sg
mina
one.nom.cel
i
mxn
sêþa
one_third-nom
1 ⅓ of a nafsa

If a mixed number is used pronominally, then only the numeral for m assumes its pronominal form:

(6)
a mina i sêþa
a
npn
mina
one.nom.cel
i
mxn
sêþa
one_third-nom
1 ⅓ of it

Likewise, a mixed number used nominally receives changes only to the numeral for m:

(7)
sraþvilm·ener i mjarâten glêma
sraþvil-m·en-er
sixteen.one-number-nom.sg
i
mxn
mja-râ-ten
six-fracb-frac.nom
glêma
five.nom.cel
the number 17 ⅚

Inexact numerals

Inexact numerals are represented in scientific notation with base 16. The short-form digits of the significand are listed (with an implied decimal point after the first digit), followed by a suffix representing the exponent.

The exponent suffixes are listed in Table 22. Odd powers over 166 are derived from the power below, prepended with ⟦-lî-⟧. For instance, 1611 has the suffix ⟦-lîflerico⟧, from the suffix for 1610.

Powers below 164 are derived from their corresponding reciprocals by prefixing ⟦-maga-⟧. For instance, 1612 has the suffix ⟦-magaacþeno⟧, from the suffix for 1612.

#Name
1624-vanaso
1622-retraþo
1620-estrôto
1618-dasvito
1616-êsravo
1614-pertapo
1612-acþeno
1610-flerico
168-nelepro
166-cjamiþo
165-lîþêrnero
164-têrnero
163-ermenroto
162-henroto
161-ermeþo
160-mino
161-sevo
162-garpo
163-seħarpo
164-têramo
Table 22: Exponents for use in short numerals.

Note that adding or removing trailing zeroes in the significand changes the precision of the numeral. A leading zero in the significand is not allowed unless it is the only digit.

Examples:

Inexact numerals are considered short numerals and thus take classifiers.

An inexact numeral with ⟨pen⟩ in the significand is an indefinite inexact numeral, which shows only the order of magnitude of something. Unlike an inexact numeral with ⟨ces⟩ as the magnitude, an indefinite inexact numeral establishes a lower bound on the quantity.

The inexact exponents are also used as prefixes for units of measure in systematic systems.

Complex numerals

Complex numerals are composed of the real part, followed by ⟦-perin-⟧ or ⟦-ŋils-⟧, then the imaginary part. ⟦-perin-⟧ is used when the imaginary part is positive and ⟦-ŋils-⟧ is used when it is negative. Both the real and the imaginary part are expressed as short numerals, and the resulting numeral is short.

If the real part is omitted, then it is assumed to be zero. If the imaginary part is omitted, then it is assumed to be either 1 or −1, depending on its sign.

The particle ⟨ceþe⟩ affects only the real part of the numeral.

If one or both components are exact but not integral, then a rational numeral is used with a common denominator, in which the numerator is a complex numeral.

Alternatively, one or both components may be inexact, in which case the other must either be integral or inexact. If both components are inexact, then they must still be listed in full.

(8)
mjaperindo
mja-perin-do
six-cpx-five
6+5i
(9)
tarŋilþen
tar-ŋils-sen
four-cpx.neg-two
42i
(10)
perinen
perin-en
cpx.neg-three
3i
(11)
vilŋils
vil-ŋils
one-cpx.neg
1i
(12)
ceþe vfeperinva
ceþe
minus
v\fe-perin-va
eight-cpx-twelve
8+12i
(13)
âsêþa mjaperinsen
â-sêþa
nnom-one_third.nom
mja-perin-sen
six-cpx-two
13(6+2i)=2+23i
(14)
vilperinentarħassenmino
vil-perin-en-tar-ħas-sen-mino
one-cpx-three-four-thirteen-two-inexact.16⁰
1exact+3.4D2164 SFsi

Number agreement

The morphological number of a noun modified by a numeral agrees with that numeral. In particular:

Dates and time

Numeric prefixes

Ŋarâþ Crîþ has a set of prefixes used for derivation (e.g. in order to describe an entity of some number of parts). These are not based on the ordinary cardinal numeral system but rather on the prime factorization of a number.

An ordinary prefix phrase consists of one or more prefixes from Table 23, such that the prefixes are sorted first by ascending base, then by descending exponent. A power greater than 6 or less than −2 is expressed by compounding multiple prefixes of the same base until the desired power is reached. A prefix phrase is either an ordinary prefix phrase or a prefix from table Table 24.

Factorx1x2x3x4x5x6x1x2
2lalelilo
3šešišêšôšîšâšašo
5tetotita
7fifafose
11łiłałêłołôłîłâłe
13gacogige
17cþacþâcþicþecþêcþîcþocþô
19jocjonjovjosjorjojecje
23jacjanjavjasjarjanjevje
29ricrivrisrifrigrisjerje
31tfatfâtfitfetfêtfîtfotfô
Table 23: Numeric prefixes in Ŋarâþ Crîþ.
PrefixGloss
vli-one, mono-, uni-
vlê-many, multi-, poly-
þra-few, oligo-
Table 24: Special numeric prefixes.

If a prefix phrase modifies a noun that is monosyllabic in the nominative case, then an infix ⟦-i-⟧ is added between them.

Numerals in writing

The general rule for writing numerals is that anything from the short numeral sytem may either be written with digits or spelled out, and that anything else is always spelled out. For instance, ⟨navo glêmac⟩ may not be written as **⟨navo 5⟩ or even as **⟨navo 5âc⟩, but ⟨navo sensraþpinlaþ⟩ may be written as ⟨navo 2Blaþ⟩. Similarly, ⟨nefasaþ forþ⟩ cannot be written using figures at all, while ⟨len forþ⟩ may be abbreviated as ⟨7 forþ⟩.

The short-numeral parts of rational numerals, which are as a whole considered long numerals, may also be abbreviated: ⟨sraþvilm·ener i mjarâten glêma⟩ to ⟨11m·ener i 6râten glêma⟩ (but not **⟨11m·ener i 6râten 5⟩).

Since the digits in inexact numerals are read one by one instead of respecting place value, a łil is inserted after the first digit when an inexact numeral is abbreviated: ⟨senvilceshenroto⟩ to ⟨2·10henroto⟩.

Units of measure

For dimensions other than time, there are two systems of measure: the traditional system uses all units. The systematic system uses only one of the units, prefixed with inexact exponents; sometimes, the systematic unit is used without any prefixes, using inexact numerals instead.

Date and time

The year is approximated as having 403 5⁄24 days; that is, the year length varies between 403 and 404 days, with five leap years per 24-year cycle. (In particular, the leap years fall on years 0, 5, 10, 15, and 20 mod 24.) This approximation drifts from the true year by about 1 day per 1234 years.

UnitConversionApproximate SI equivalent
eleþ403524 envo408.61 (Earth) days
enva48 elvo24.32 hours
elva48 cenðor30.4 minutes
cenðos48 rirêns38 seconds
rirens0.792 seconds
Table 25: Units of time.

The year is also divided into 13 half-months (senło; sg. senłas) of 31 or 32 days (approximating half of the lunar orbital period of 62.02 days). In non-leap years, each half-month is conveniently 31 days long. In leap years, the last half-month is extended by one day.

#NameEarth equivalent
0serend·rênerþMarch 21 – April 17
1tovrasartaApril 18 – May 15
2vôrvaronMay 16 – June 12
3elþesêrenJune 13 – July 10
4šisonm·êvaJuly 11 – August 7
5naram·jenaAugust 8 – September 5
6ceaþcfiþarSeptember 6 – October 3
7eltasnelserþOctober 4 – October 31
8inoravonaNovember 1 – November 28
9firjarcinNovember 29 – December 26
10ercig·inaDecember 27 – January 23
11sifłit·anoJanuary 24 – February 20
12ginasferþFebruary 21 – March 20
Table 26: The names of each half-month.

The calendar has a nine-day week. As a result, the day of week advances by two days every 24-year cycle, and the day-of-week pattern cycles every 216 years. The first six days of the week are considered work days, while the last two are rest days. The seventh day, in modern times, is a ‘half-work’ day.

#NameAssociated element
0pelestodarkness, chaos
1venesfire
2ħatorwater
3anarearth
4neralsair
5cþilgesnastars
6sivarjamoon
7elvinasun
8felcaþalight, order
Table 27: The names of the days of the week.

Length

UnitConversionApproximate SI equivalent
nafsa16 eletin1.90 km
eleten12 vetin119 m
veten8 avanto9.92 m
avanta (systematic)6 rjasir1.24 m
rjaser24 cento20.7 cm
centa256 sanin8.6 mm
sanen3.4 μm
Table 28: Units of length.

Currency

The traditional currency system, which was used in the Federation of Crîþja, is almost isomorphic to the British pre-decimal currency system. One erłol is equivalent to 20 mjari, and one mjare is equivalent to 12 edva. Unlike with the £sd system, one edvel is divided into seven seedva, although the seedvel is used primarily as a unit of accounting.

In the full abbreviation, each unit has its own symbol, which is followed by the number of that unit involved. If there is more than one unit involved, then each such string is separated by spaces. Units of which there are zero are omissible only from the left and the right; that is, **⟨9{rł2 e3}⟩ is not allowed and should be written as ⟨9{rł2 m0 e3}⟩ instead. Likewise, the unabbreviated reading lists the units with their quantities, except that all units of which there are zero are omitted (i.e. ⟨erłoc nefa edva prêno’ce⟩).

In the condensed abbreviation, the mjare and edva amounts are separated with a jedva, with no ⟨m⟩ or ⟨e⟩. If there are zero mjari, then the part before the slash is ⟨0⟩; if there are zero edva, then the part after the slash is the ŋos, ⟨’⟩. Note that the condensed abbreviation is not applicable if there are any seedva.

In the abbreviated reading, which also does not admit any seedva, amounts less than one mjare are expressed using a numeric prefix plus ⟨edva⟩. Amounts of one mjare or more are expressed as follows:

QuantityAbbreviationLongShort
1⁄7d.9{s1}seedvel mina
2⁄7d.9{s2}seedva nefa
3⁄7d.9{s3}seedva prêno
4⁄7d.9{s4}seedva resiþ
5⁄7d.9{s5}seedva glêma
6⁄7d.9{s6}seedva cfersîþ
1d.9{e1}edvel minavliedva
1 1⁄7d.9{e1 s1}edvel mina seedvel mina’ce
1 2⁄7d.9{e1 s2}edvel mina seedva nefa’ce
1 6⁄7d.9{e1 s6}edvel mina seedva cfersîþ’ce
2d.9{e2}edva nefalaedva
2 4⁄7d.9{e2 s4}edva nefa seedva resiþ’ce
3d.9{e3}edva prênošeedva
4d.9{e4}edva resiþleedva
5d.9{e5}edva glêmateedva
6d.9{e6}edva cfersîþlašeedva; lomjare
7d.9{e7}edva plamisfiedva
8d.9{e8}edva ŋatirliedva
9d.9{e9}edva nalarþšiedva
10d.9{eA}edva emralateedva
11d.9{eB}edva nalfołiedva
1s.9{m1}; 9{1/’}mjare minamjare; âmina i ces
1s. 1d.9{m1 e1}; 9{1/1}mjare mina edvel mina’ceâmina i vil
1s. 2d.9{m1 e2}; 9{1/2}mjare mina edva nefa’ceâmina i sen
1s. 3d.9{m1 e3}; 9{1/3}mjare mina edva prêno’ceâmina i en
1s. 4d.9{m1 e4}; 9{1/4}mjare mina edva resiþ’ceâmina i tar; venos
1s. 6d.9{m1 e6}; 9{1/6}mjare mina edva cfersîþ’ceâmina i mja
1s. 9d.9{m1 e9}; 9{1/9}mjare mina edva nalarþ’ceâmina i ni
2s.9{m2}; 9{2/’}mjarec nefaânefa i ces
2s. 6d.9{m2 e6}; 9{2/6}mjarec nefa edva cfersîþ’ceânefa i mja; cþîf
3s.9{m3}; 9{3/’}mjari prênoâprêno i ces
3s. 6d.9{m3 e6}; 9{3/6}mjari prêno edva cfersîþ’ceâprêno i mja
4s.9{m4}; 9{4/’}mjari resiþâresiþ i ces
4s. 6d.9{m4 e6}; 9{4/6}mjari resiþ edva cfersîþ’ceâresiþ i mja
5s.9{m5}; 9{5/’}mjari glêmaâglêma i ces; catra
6s.9{m6}; 9{6/’}mjari cfersîþâcfersîþ i ces
10s.9{mA}; 9{A/’}mjari emraâħemra i ces; ercjor
11s. 7d.9{mB e7}; 9{B/7}mjari nalfo edva plamis’ceânalfo i len
15s. 2d.9{mF e2}; 9{F/2}mjari grimin edva nefa’ceâgrimin i sen
16s. 11d.9{m10 eB}; 9{10/B}mjari meþos edva nalfo’ceâmeþos i pin
17s.9{m11}; 9{11/’}mjari sraþvilsraþvilčis
17s. 5d.9{m11 e5}; 9{11/5}mjari sraþvil edva glêma’cesraþvilčis i do
18s.9{m12}; 9{12/’}mjari sraþsensraþsenčis
19s.9{m13}; 9{13/’}mjari sraþiensraþienčis
19s. 11d.9{m13 e11}; 9{13/B}mjari sraþien edva nalfo’cesraþienčis i pin
19s. 11 6⁄7d.9{m13 e11 s6}mjari sraþien edva nalfo’ce seedva cfersîþ’ce
£1.9{rł1}; 9{rł1 0/’}erłol minaerłol
£1. 0s. 1d.9{rł1 m0 e1}; 9{rł1 0/1}erłol mina edvel mina’ceerłol mina i inora i vil
£1. 1s.9{rł1 m1}; 9{rł1 1/’}erłol mina mjare mina’ceerłol mina i âmina
£1. 3s. 8d.9{rł1 m3 e8}; 9{rł1 3/8}erłol mina mjari prêno’ce edva ŋatir’ceerłol mina i âpreno i fe
£2.9{rł2}; 9{rł2 0/’}erłoc nefa
£2. 3s. 6d.9{rł2 m3 e6}; 9{rł2 3/6}erłoc nefa mjari prêno’ce edva cfersîþ’ceerłoc nefa i âpreno i mja
£14. 8s. 2d.9{rłE m8 e2}; 9{rłE 8/2}erłe grinjo mjari ŋatir’ce edva nefa’ceerłe grinjo i âŋatir i sen
£34. 17s. 1d.9{rł22 m11 e1}; 9{rł22 11/1}erłe sensraþsen mjari sraþvil’ce edvel mina’ceerłe sensraþsen i sraþvilčis i vil
Table 29: Expressions of various amounts of money in the traditional currency system.

Another format for expressing currency, used in accounting, is ⟨9{E mmes}⟩, in which the units below the erłol are expressed as fixed-width fields. For instance, £127. 19s. 11 6⁄7d. (⟨9{rł7F m13 eB s6}⟩ in the common format) can be expressed as ⟨9{7F 13B6}⟩. The right part of an amount expressed in the accounting format is read digit by digit, with the space read as ⟨inora⟩; thus the prior example would be read as ⟨lensratłar inora vilenpinmja⟩.

Rates of currency against currency (such as tax rates) are customarily given as an amount per erłol, giving a resolution of 1/1680 or roughly 0.06%.